If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+23x+12=32
We move all terms to the left:
3x^2+23x+12-(32)=0
We add all the numbers together, and all the variables
3x^2+23x-20=0
a = 3; b = 23; c = -20;
Δ = b2-4ac
Δ = 232-4·3·(-20)
Δ = 769
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(23)-\sqrt{769}}{2*3}=\frac{-23-\sqrt{769}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(23)+\sqrt{769}}{2*3}=\frac{-23+\sqrt{769}}{6} $
| 8x+5=540 | | 2x+1=-5x+15 | | 7k-2(3k+1)-9=-(11-k) | | 5=3v−4 | | 5x+7=−30 | | 162=5x-6+x | | -2-6=3x+4 | | 65+40=3x | | −90=6z | | 4d+6=-7 | | 8.6+8.3=x+89.7 | | 4(2x+7)=-33+37 | | -3(5-2x)=6-4x+9 | | 0=-16y | | 2x-1=52 | | 9+4y=16 | | 3x-5=2*x | | 13.09+17.7j=16j | | 8+10w=2+9w | | 1/9z=81 | | s3− 5=–4 | | 8-6(x-7)=24x | | 2x+3(13)=51 | | 6=x/15.36 | | 10-4b=50 | | 9x-50=30x+9 | | 16=10+3v | | 1(3-6x)=-(-6x+3) | | 10.68x+21.6-7.23=2.3x+17 | | 4x4+3x3–129x2–208x+60=0 | | 5n-7n+21+2n=-25 | | 3(4x+7)=2(6x+8) |